\qquad Hour
Online book: www.connected.mcgraw-hill.com. redemption code: LWSD-JVW9-W6PO

$$
\begin{aligned}
& \text { Electricity Book Assignment - } \\
& \text { Chapter } 22 \text { p. } 598
\end{aligned}
$$

1. Think of 3 things electricity can do:
2. Define electric current:
3. Define electric circuit:
4. Define power and include the unit it is measured in. (p. 600)
5. Electric Current is represented by the letter \qquad and is measured in amperes (amps) which are abbreviated with the letter \qquad .
6. The first box is the power equation from earlier this year. The second box has the new equation on p. 600. Determine what each variable stands for and its units.

7. Define potential difference $(\Delta \mathrm{V})$: (go back to p. 578) Potential difference is also known as Voltage.
8. Define resistance. (p. 604)
9. The unit for resistance is \qquad and is represented by the Greek letter \qquad
Ohm's law:

$\Delta V=$ \qquad measured in \qquad $1=$ \qquad measured in \qquad
$R=$ \qquad measured in \qquad
10. Find the current of the following devices when they are connected across a potential difference (voltage) of 120 V :
a. Hot plate $(R=48 \Omega)$
b. microwave $(R=20 \Omega)$
\qquad Hour \qquad
Online book: www.connected.mcgraw-hill.com. redemption code: LWSD-JVW9-W6PO
11. Define parallel connection: (p. 608)
12. Define series connection:

Read 'The kilowatt-hour' on p. 612 and then refer to your (or your friend's) Electric bill.

13. Convert 345 Watts into kilowatts:
14. Electric companies measure electrical energy in the unit \qquad which is abbreviated by kWh.
15. Define kilowatt-hour:
16. How many kWh (kilowatt hours) did your house use in March? \qquad

Your charge rate $=\$ 0.101$ per kWh (about 10 cents per kWh)

1. How much would it cost to run a 100 Watt lightbulb for 24 hours? ($\$ 0.24$ or 24 cents)

Step 1: Change Watts (W) into kilowatts (kW) (1000 Watts=1kW) This is your POWER.
Step 2: Use P=W/ Δt to solve for work (in kWh) (Keep Δt in hours)
Step 3: Multiply work by price per kWh (\$0.101)
2. How much would it cost to run a 140 watt PlayStation $\mathbf{4}$ for $\mathbf{3}$ hours? Use same 3 steps from above (\$0.042 or 4.2 cents)
3. How much would it cost to run a $\mathbf{4 5 0}$ watt $\mathbf{5 0}$ " plasma TV for $\mathbf{3}$ hours? Use same 3 steps from above ($\approx \$ 0.14$ or 14 cents)
4. What is your total for 3 hours of game playing? \qquad

